Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Respir Care ; 67(8): 899-905, 2022 08.
Article in English | MEDLINE | ID: covidwho-1863113

ABSTRACT

BACKGROUND: Methacholine challenge testing (MCT) is a common bronchoprovocation technique used to assess airway hyper-responsiveness. We previously demonstrated that the addition of a viral filter to the nebulizer exhalation limb substantially reduced expelled particles during MCT. Our aim was to evaluate whether this modification affects the delivered dose of methacholine. METHODS: A mechanical ventilator was connected to a lung simulator with breathing frequency 15 breaths/min, tidal volume 500 mL, inspiratory-expiratory ratio 1:1, with a sinusoidal waveform. We compared methacholine dose delivery using the Hudson Micro Mist or AeroEclipse II BAN nebulizers powered by either a dry gas source or a compressor system. A filter placed in line between the nebulizer and test lung was weighed before and after 1 min of nebulized methacholine delivery. Mean inhaled mass was measured with and without a viral filter on the exhalation limb. Dose delivery was calculated by multiplying the mean inhaled mass by the respirable fraction (particles < 5 µm) and inhalation time. Unpaired t test was used to compare methacholine dose delivery with and without viral filter placement. RESULTS: The addition of a viral filter did not significantly affect methacholine dose delivery across all devices tested. Using a 50-psi dry gas source, dose delivered with or without a viral filter did not differ with the Hudson (422.3 µg vs 282.0 µg, P = .11) or the AeroEclipse nebulizer (563.0 µg vs 657.6 µg, P = .59). Using the compressor, dose delivered with and without a viral filter did not differ with the Hudson (974.0 µg vs 868.0 µg, P = .03) or the AeroEclipse nebulizer (818.0 µg vs 628.5 µg, P = .42). CONCLUSIONS: The addition of a viral filter to the nebulizer exhalation limb did not affect methacholine dose during bronchoprovocation testing. Routine use of a viral filter should be considered to improve pulmonary function technician safety and infection control measures during the ongoing COVID-19 pandemic.


Subject(s)
COVID-19 , Exhalation , Administration, Inhalation , Aerosols , Albuterol , Bronchodilator Agents , Equipment Design , Humans , Methacholine Chloride , Nebulizers and Vaporizers , Pandemics
2.
Respir Care ; 66(12): 1858-1865, 2021 12.
Article in English | MEDLINE | ID: covidwho-1524338

ABSTRACT

BACKGROUND: Methacholine bronchoprovocation or challenge testing (MCT) is commonly performed to assess airway hyper-responsiveness in the setting of suspected asthma. Nebulization is an aerosol-generating procedure, but little is known about the risks of MCT in the context of the ongoing coronavirus disease 2019 (COVID-19) pandemic. We aimed to quantify and characterize aerosol generation during MCT by using different delivery methods and to assess the impact of adding a viral filter. METHODS: Seven healthy subjects performed simulated MCT in a near particle-free laboratory space with 4 different nebulizers and with a dosimeter. Two devices continuously sampled the ambient air during the procedure, which detected ultrafine particles, from 0.02-1 µm, and particles of sizes 0.3, 0.5, 1.0, 2.0, 5.0, and 10 µm, respectively. Particle generation was compared among all the devices, with and without viral filter placement. RESULTS: Ultrafine-particle generation during simulated MCT was significant across all the devices. Ultrafine-particle (0.02-1 µm) concentrations decreased 77%-91% with the addition of a viral filter and varied significantly between unfiltered (P < .001) and filtered devices (P < .001). Ultrafine-particle generation was lowest when using the dosimeter with filtered Hudson nebulizer (1,258 ± 1,644 particle/mL). Ultrafine-particle concentrations with the filtered nebulizer devices using a compressor were higher than particle concentrations detected when using the dosimeter: Monaghan (3,472 ± 1,794 particles/mL), PARI (4,403 ± 2,948), Hudson (6,320 ± 1,787) and AirLife (9,523 ± 5,098). CONCLUSIONS: The high particle concentrations generated during MCT pose significant infection control concerns during the COVID-19 pandemic. Particle generation during MCT was significantly reduced by using breath-actuated delivery and a viral filter, which offers an effective mitigation strategy.


Subject(s)
COVID-19 , Pandemics , Aerosols , Humans , Infection Control , Methacholine Chloride , Nebulizers and Vaporizers , Particle Size , SARS-CoV-2
3.
Respir Care ; 66(8): 1291-1298, 2021 08.
Article in English | MEDLINE | ID: covidwho-1244286

ABSTRACT

BACKGROUND: Peak flow testing is a common procedure performed in ambulatory care. There are currently no data regarding aerosol generation during this procedure. Given the ongoing debate regarding the potential for aerosol transmission of SARS-CoV-2, we aimed to quantify and characterize aerosol generation during peak flow testing. METHODS: Five healthy volunteers performed peak flow maneuvers in a particle-free laboratory space. Two devices continuously sampled the ambient air during the procedure. One device can detect ultrafine particles 0.02-1 µm in diameter, while the second device can detect particles 0.3, 0.5, 1.0, 2.0, 5.0, and 10 µm in diameter. Five different peak flow meters were compared to ambient baseline during masked and unmasked tidal breathing. RESULTS: Ultrafine particles (0.02-1 µm) were generated during peak flow measurement. There was no significant difference in ultrafine particle mean concentration between peak flow meters (P = .23): Respironics (1.25 ± 0.47 particles/mL), Philips (3.06 ± 1.22), Clement Clarke (3.55 ± 1.22 particles/mL), Respironics Low Range (3.50 ± 1.52 particles/mL), and Monaghan (3.78 ± 1.31 particles/mL). Ultrafine particle mean concentration with peak flow testing was significantly higher than masked (0.22 ± 0.29 particles/mL) and unmasked tidal breathing (0.15 ± 0.18 particles/mL, P = .01), but the ultrafine particle concentrations were small compared to ambient particle concentrations in a pulmonary function testing room (89.9 ± 8.95 particles/mL). CONCLUSIONS: In this study, aerosol generation was present during peak flow testing, but concentrations were small compared to the background particle concentration in the ambient clinical environment. Surgical masks and eye protection are likely sufficient infection control measures during peak expiratory flow testing in asymptomatic patients with well controlled respiratory symptoms, but COVID-19 testing remains prudent in patients with acute respiratory symptoms prior to evaluation and peak expiratory flow assessment while the community prevalence of SARS-CoV-2 cases remains high.


Subject(s)
COVID-19 , Aerosols , COVID-19 Testing , Humans , Masks , Particle Size , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL